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A New Keynesian Monetary Model
The Ireland’s (2004) model
[Ireland, P.N. (2004), “Money’s role in the monetary business cycle”,
Journal of Money, credit & Banking, 36(6), 969-983]

Nota: otra version simple de presentar un modelo monetario neo-keynesiano puede verse en el capitulo 3 del libro Monetary Policy, Inflation,
and the Business Cycle, de Jordi Gali, en Princeton University Press, 2008.

1. An Optimizing IS-LM-PC Specification
1.1 Overview

Here, the models of Ireland (1997) and McCallum and Nelson (1999) are modified
to focus on the role of moneyv in the monetary business cycle. The economy
consists of a representative household, a representative finished goods-producing
firm, a continnum of intermediate goods-producing firms indexed by ¢ € [0, 1],
and a monetary authority. During each period ¢ = 0,1, 2, ..., each intermediate
coods-producing firm produces a distinet, perishable intermediate good. Hence,
intermediate goods may also be indexed by ¢ € |0, 1], where firm ¢ produces good
t. The model features enough syvimmnetryv, however, to allow the analysis to tocus
on the behavior ot a representative intermediate goods-producing firm, identified
bv the generic index .



1.2 The Representative Household

The representative household enters period  with money M; | and bonds B, ;. At
the beginning of the period, the household receives a lump-sum nominal transfer 7,
from the monetary authority. Next, the household’s bonds mature, providing B;
additional units of money. The housechold uses some of this money to purchase
B; new bonds at nominal cost B, /r;, where r, denotes the gross nominal interest
rate between fand ¢ + 1.

The household supplies A, (i) units of labor to each intermediate goods-producing
firm i € [0, 1], for a total of

1
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|

J



during period ¢. The household is paid at the nominal wage rate W,. The house-
hold consumes ¢; units of the finished good, purchased at the nominal price F,
from the representative finished goods-producing firm.

At the end of period ¢, the household receives nominal profits D, (i) from each
intermediate goods-producing firm i € [0, 1], for a total of

1
D;:/ D (i)di.
JU

The household then carries M, units of money into period ¢ + 1, subject to the
budget constraint

My «+ 71+ B+ Wby + D, B/ + M,
= Ci + '

2 - 7 (1)



The household’s preferences are described by the expected utility function

B> Badulc, (M/P) /e — nhi},

=0

where 1 > 3 > 0 and 5 > 0. The preference shocks a;, and ¢, follow the autore-
gressive process

In(ar) = p,In(ar 1)+ 2u (2)
and
In(er) = (1— p) In(e) + p, In(er 1) + 2o (3)

where 1 > p, > —1, 1 > p, > —1, ¢ > 0, and the zero-mean, serially uncorrelated
imnovations £,; and £., are normally distributed with standard deviations o, and
T,



Thus, the household chooses ¢, h;, B;, and M, forallt = 0,1, 2, ..., to maximize
its utility subject to the budget constraint (1) for all + = 0,1,2,.... Letting
m¢ = M,/ P, denote real balances, m; = F,/F, | the inflation rate, w, = W,/ P, the
real wage rate, and A; the nonnegative multiplier on (1), the first-order conditions

for this problem are
¥
au (e, mefer) = Ay,
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(ai/eus(e,myfe) =N — BE (N1 /7)),
and (1) with equality for all t =0,1,2, ....

(4)
na; = Ay, (5)
(6)
(7)



1.3 The Representative Finished Goods-Producing Firm

During each period £ = 0,1, 2, ..., the representative finished goods-producing firm
uses (1) units of each intermediate good i € [0, 1], purchased at nominal price
P (i), to manufacture g units of the finished good according to the constant-

returns-to-scale technology described by

where 6 > 1. Thus, the finished goods-producing firm chooses (i) for all 7 € [0, 1|
to maximize its profits, given by

10/(8 1)
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=

for all t =0,1,2,.... The first-order conditions for this problem are



v (i) = [P(i)/P] "y,

forallie 0,1 andt=0,1,2, ...
Competition drives the finished goods-producing firm’s profits to zero in equi-
librium. This zero-profit condition implies that
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forall t =0.,1.2, ...



1.4 The Representative Intermediate Goods-Producing Firm

During each period ¢t = 0. 1, 2, ..., the representative intermediate goods-producing
firm hires A, (i) units of labor from the representative household to manufacture
(i) units of intermediate good i according to the constant-returns-to-scale tech-

nology described by
zehe (1) 2 (i) (8)
The aggregate technology shock z; follows the autoregressive process

In(z)=(1—p.)In(z) +p.In(z 1)+ e, (9)

where 1 > p. > —1 and z > 0. The zero-mean, serially uncorrelated innovation
£.; 1s normally distributed with standard deviation o..

L
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Since the intermediate goods substitute impertectly for one another in pro-
ducing the finished good, the representative intermediate goods-producing firm
sells its output in a monopolistically competitive market: during each period
t =0,1,2,..., the intermediate goods-producing firm sets the nominal price F;(i)
for its output, subject to the requirement that it satisty the representative finished
goods-producing firm’s demand. In addition, the intermediate goods-producing
firm faces a gquadratic cost of adjusting its nominal price, measured in terms of
the finished good and given by

o[ Bi)

— — 1| .,
2 | 7P 1(7) v

where ¢ > 0 and where 7 denotes the steady-state inflation rate.




The cost of price adjustment makes the intermediate goods-producing firm’s
problem dynamic; it chooses P (i) for allt = 0,1, 2, ... to maximize its total market
value, given by

[
E—Z BN Dy (i) /P,
t=0
where '\, /P, measures the marginal utility value to the representative household
of an additional dollar in profits received during period ¢ and where
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for all t =0,1,2,.... The first-order conditions for this problem are

0 = (1-6)\ F‘TEE)‘ ﬁ (%) 1O, F‘“TE’)‘ ﬂ 1(2;) (11)
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1.5 The Monetary Authority

The monetary authority conducts monetary policy by adjusting the nominal inter-
est rate r; in response to deviations of output y,. inflation 7,, and money growth

w, = M, /M, (12)
from their steady-state values y, 7, and p according to the policy rule
In(ri/r) = p,In(re 1/r)+p, Iy 1/y)+p; In(me o /7) 4 p, In(pg o /p) + e, (13)

where r is the steady-state value of r, and where the zero-mean, serially uncorre-
lated innovation £,; is normally distributed with standard deviation .



1.6 Symmetric Equilibrium

In a symmetric equilibrium, all intermediate goods-producing firms make identical

decisions, so that (i) = wy, (i) = hy, P(1) = B, and di(i) = D, (i)/ P =

D,/P, = d, for all i € [0,1] and ¢ = 0,1,2,.... In addition, the market-clearing

conditions M, = M, |+ T, and B, = B, | =0 must hold for all t =0,1,2,....
After imposing these conditions (1)-(13) become

Y = ¢+ f (l - 1) Ui (1)
2\
111{“1) = Pu hl{ﬂ’f l) + Eat, (2)
Iner) = (1 — p.)In(e) + p.In(er 1) + eer, (3)

auy (e, mefe) = A, (4)
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and

In(r:/r) = p,In(re 1/7)+p, In(ye 1/y)+p (7 o/m)+p, Inp, /p) +n. (13)

These 13 equations determine equilibrium values for the 13 variables y,, 7, my.
Ty Coy gy wyy dyy Agy pty, ag, ey, and z;.

Use (4), (5), (8), and (10) to eliminate A;, wy, hy, and d;. Then the system can
be written more compactly as



G /T 2
Y =+ = <_I - ) Yt (1)

2\7
In(a;) = p, m(a: 1)+ cau, (2)
In(e;) =(1—p.)Inle) + p, In(e; 1) + &4, (3)
aguy (ce,myfe) = OriEyag yuy (o, myo/ero) /o], (6)
rius(c,my fey) = (e — 1Veyuy (e, my/ey), (7)
In(z)=(1—p.)In(z) +p.In(z 1)+ e, (9)

| 1} | T M
h-1 = 6 ; —@(——1) (—) 11
L;ul[f?;,m;;ﬂ)‘ T T (1)

| ; |
- QLU Crp 1, T 1/ Cr 1 Tt41 Yl Tt41

+B4E, ( 1/e) (T -1 ,
aguy(cy,my/e;) T i T

My = 1T (12)

and

In(r/r) = p,In(re 1/r)+p, Wye 1/9)+p, (e 1/7)+p, (1, /1) i (13)



These 9 equations determine equilibrium values for the 9 variables w,, ., my, r,
Cry bys Ay €y and z;.



1.7 The Steady State

In the absence of shocks, the economy converges to a steady state, in which 1y, = .
T =T, My =M, Ty =7,C = Jti, =, ag = a, ¢, = ¢, and 2, = z. The steady-
state values a, e, and z are determined by (2), (3), and (9). The steady-state
value 7 is determined by (13).

The steady-state value r is determined by (6) as

r=mx/03.
The steady-state value g is determined by (12) as
jL=T.
The steady-state value ¢ is determined by (1) as

c=1.



The steady-state values y and m are determined by (7) and (11):

rus(y.m/e) = (r — Dew, (y, m/e)

, 0 1
w(ymie) = (777 (3)-

and



1.8 The Linearized System

The system consisting of (1)-(3), (6), (7), (9), and (11)-(13) can be log-linearized
around the steady state in order to describe how the economy responds to shocks.
Let g, = In(w/y), 7¢ = In(m /7)), e = ln(m/m), 7 = In(r/7), ¢ = In(e/c),
i, = In(p, /p), a; = Infa;/a), ¢, = In(e;/e), and 2z, = In(z,/z). The first-order
Taylor approximations vield

ﬁ!’ — ﬁ!".' (1)
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and
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where
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Equation (6) is the IS curve, equation (7) is the LM curve, equation (11) is
the Phillips curve, and equation (13) is the policy rule. Use (1) to eliminate ¢,

and rewrite the system as

ﬁ’-!' — puﬁ’-!' 1 —I_ EM-!".' (2)

€ = P.Ct 1+ Eet, (3)

h = Ewgio —wi(re — Emte) + wol(my — Eymyg o) (6)
—wa(l = p.)ér +wi(l = p,)a,

My = VY — Yolt + Y361, (7)

Zr=p.Ze 1+ E, (9)
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A simplified version of the Ireland’s (2004) model:

1o
Ul c |\/|t+1£ :|:Ct(mt+1/et):| -1
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Under this utility function the structural parameters are:

-0

o,=1lo;, @, = — 7.=L y,=1/(r-1); y,=0;

Let the following equation be a simple Taylor rule:
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where we have assumed that the steady state of the structural shocks is zero.



The solution for the system of equations described above is:
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where Ajjy Cic are the elements of the following matrices:
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A21 Azz _7 1 0 f
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Impulse-response functions:
Given the following stochastic processes for structural shocks:

L, = p,L &,

a‘t = pza‘t—l + gat
gr,t = pgr gr,t—l + ut

It is easy to derive the impulse-response functions, using the following expressions:



Variance decomposition of forecast errors:

Given the following expressions:

£ j DS SN
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it can be obtained, for n > O:
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Therefore the variance decomposition of forecast errors for each variable will be:
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2. Solving the Ireland’s (2004) model

Let ’
= { my T } ,
i - - . . . . . f
St = { Yoo My Ty Teo1 My 0 Y T
and r
Uy = { a; € Zp Ep } .
Then (7), (12), and (13) can be written as
Af) = Bs, + Cuy, (14)

where Ais 3 x 3, Bis3x 7, and (' is 3 x 4.
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Equations (6) and (11) can be written as
DE,s! , + FE,f. , = Gs) + Hf + Ju,,

where D and G are 7 x 7, Fland H are 7 x 3, and .J 1s 7 x 4.
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Equations (2), (3), and (9) can be written as

v = Pv; 1+ &y, (16)
where
fp, 00 0]
10 p. 00
P= 0 0 p. 0
0 0 0 0]
and
!
St = { Eat Cet &zt Ert

Rewrite (14) as
' =A'Bs)+ A Cu,.



When substituted into (15), this last result yields
(D+ FA 'B)E;s] |+ FA 'CPv, = (G+ HA 'B)s] + (J+ HA 'C)v,

or, more simply,

Eis) | = Ks, + Luv,, (17)

where

K= (D+FA'B) Y(G+ HA 'B)

and

L=(D+FA 'B) '(J+HA 'C —FA 'CP).

If the 7> 7 matrix K has five eigenvalues inside the unit circle and two eigenvalues
outside the unit circle, then the system has a unique solution. If A" has more than
two eigenvalues outside the unit circle, then the system has no solution. If & has
less than two eigenvalues outside the unit circle, then the system has multiple
solutions. For details, see Blanchard and Kahn (1980).

Blanchard, O. and C.M. Kahn (1980), “The solution of linear difference models under rational expectations”, Econometrica, 48(5), 1305-
1311.



Assuming from now on that there are exactly two eigenvalues outside the unit
circle, write K as
K=M 'NM,

where _
v | N0
N= 0 Ny
and _ .
A — My, My

Moy Mo

The diagonal elements of N are the eigenvalues of A, with those in the 5 x 5
matrix Ny inside the unit circle and those in the 2 x 2 matrix N, outside the unit
circle. The columns of M ! are the eigenvectors of K; My, is 5 x 5, M, is 5 x 2,
My 1s 2 x 5, and My, 1s 2 x 2. In addition, let

L

L=,

where L, 185 x4 and L, 1s 2 x 4.



Now (17) can be rewritten as
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where

and
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Since the eigenvalues in N, lie outside the unit circle, (19) can be solved
forward to obtain

sl = —N;'Ru,.

where the 2 x 4 matrix R is given by

vec(R) = -z;er:ZN_f’éQgP-j = Z-a;er:(N._)—"ngP’é )

=0 i=0
= Z[P 7@ (N3 'Y vec(Qs) = Z[P 2 Ny Pvec(Qy)
j=0 3=0

PR
= [I(sxs)_P@)Nzl] vec(Q,)



Use this result, along with (21), to solve for
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Equation (20) now provides a solution for si,:

Substitute this result into (18) to obtain
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Finally, return to

= A'Bs)+ A Oy,
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where
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Equations (16) and (22)-(24) provide the model’s solution:
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